
pg_upgrade 9.1 → 9.5
How we managed to upgrade with (almost) no

downtime

Paul Bonaud
Developer / SysOps
@paulrb_r

Théophile Helleboid
Developer / SysOps

@chtitux

Paul Bonaud
Developer / SysOps
@paulrb_r

Théophile Helleboid
Developer / SysOps

@chtitux

Paul Bonaud
Developer / SysOps
@paulrb_r

Théophile Helleboid
Developer / SysOps

@chtitux

.eu

It’s about time
End Of Life dates (https://www.postgresql.org/support/versioning/)

Version Current minor Supported First release date EOL date

9.1 9.1.24 No September 2011 September 2016

https://www.postgresql.org/support/versioning/

Event Bus
(RabbitMQ)

Application architecture

API

Backend
App 1

Backend
App 2

Backend
App 3

pgbouncer

System architecture of one App

Instance 1
Primary

pgbadger

barman

Instance 2

Instance 3 Standby 1 Standby 2 Standby 3

Methods for upgrading
SQL dump+restore

● “no brain migration”
● Pros

○ Very simple process: pg_dumpall | psql -p5433
○ Rollback is easy
○ Bonus: Cluster is garbage-collected

● Cons
○ Long downtime with big database

Methods for upgrading
pg_upgrade

● “PostgreSQL has powerful tools, use them!”. postgresql.org/docs/9.6/static/pgupgrade.html

● 2 usages
○ Copy the data and upgrade: longer but rollback is easy
○ Upgrade “in place” (aka “hard links”): lightning fast but no rollback after upgrade

● Pros
○ Almost no downtime
○ Upgrade “in place” has a probably very acceptable downtime

● Cons
○ Not the simplest PostgreSQL tool
○ No Rollback with “in place” upgrade
○ Extensions must be in the same versions

https://www.postgresql.org/docs/9.6/static/pgupgrade.html

Methods for upgrading
logical replication

● “trigger based replication”
● An external tool replicates the changes logically to an up-to-date cluster

○ Slony
○ pglogical (PostgreSQL >= 9.4)

● Pro
○ Virtually no downtime
○ Rollback is easy
○ Bonus: the cluster is garbage-collected

● Cons
○ Complex to setup
○ Risk of split brain during migration

Methods for upgrading

SQL dump+restore

pg_upgrade

logical replication

pg_upgrade @ trainline.eu

Upgrade
RTFM, test & train

 Read - Releases notes, tools man pages, etc.

Test - The app, the upgraded Cluster, the updated clients

Train - PostgreSQL tools, upgrade process, etc.

Upgrade
Write everything, prepare for the worst

● Write down every commands
○ In your documentation
○ In a shell script

● Take decisions before upgrade
○ Who launch the script?
○ When do we decide we need to rollback ?
○ What to do if we need to rollback?

● Inform your staff
● Have fun!

Upgrade
Here we go!

Upgrade
Here we go!

● (expected) Steps:
○ Stop the application
○ Stop the SQL clusters
○ pg_upgrade
○ rsync on the standbys
○ Start the primary, the standbys and the application

● Downtime
○ Announced : 30 minutes
○ Expected : 5 minutes
○ Experienced : 25 minutes

/usr/lib/postgresql/9.5/bin/pg_upgrade --link \
 -b /usr/lib/postgresql/9.1/bin \
 -B /usr/lib/postgresql/9.5/bin \
 -d /var/lib/postgresql/9.1/main \
 -D /var/lib/postgresql/9.5/main \
 -o ' -c config_file=/etc/postgresql/9.1/main/postgresql.conf' \
 -O ' -c config_file=/etc/postgresql/9.5/main/postgresql.conf'

Aftermath
Bad things happen

● Replication info was incorrect. Missing details?
○ Verify that the "Latest checkpoint location" values match in all clusters with pg_controldata

● Upgrade of standby with rsync+hard links does not work well (it was very slow)
○ Resignation on upgrading standbys (risk taken to have 24h without any standbys)
○ Full restore in the aftermath

Aftermath
Fix things that broke

 Barman has a bug with freshly upgraded clusters

Log files changed path so pgbadger did not work anymore

Different projects on same integration cluster
→ We need a new cluster!

Next time
… was actually last time

● 2nd pg_upgrade at Trainline:
○ 30 seconds of downtime
○ Everything in a bash script
○ Application paused, not stopped

● Better experience
● Less bugs in our applications

○ “App always use the default port” now fixed

Next time
Modern tools

● Towards PostgreSQL 9.6

● No downtime for real:

pglogical to the rescue

Profit!
… and questions?

#!/bin/bash -xe

Test connection to pgbouncer is OK
psql postgres://pgbouncer@pgbouncer.sql.production:6432/pgbouncer --command 'show pools;'

Pause the databases;
psql postgres://pgbouncer@pgbouncer.sql.production:6432/pgbouncer --command 'PAUSE rails_app;'

Stop the 9.1 server
pg_ctlcluster 9.1 main stop -m fast

Test to upgrade the data
time /usr/lib/postgresql/9.5/bin/pg_upgrade --check --link \
 -b /usr/lib/postgresql/9.1/bin \
 -B /usr/lib/postgresql/9.5/bin \
 -d /var/lib/postgresql/9.1/main \
 -D /var/lib/postgresql/9.5/main \
 -o ' -c config_file=/etc/postgresql/9.1/main/postgresql.conf' \
 -O ' -c config_file=/etc/postgresql/9.5/main/postgresql.conf'

Really upgrade the data
time /usr/lib/postgresql/9.5/bin/pg_upgrade --link \
 -b /usr/lib/postgresql/9.1/bin \
 -B /usr/lib/postgresql/9.5/bin \
 -d /var/lib/postgresql/9.1/main \
 -D /var/lib/postgresql/9.5/main \
 -o ' -c config_file=/etc/postgresql/9.1/main/postgresql.conf' \
 -O ' -c config_file=/etc/postgresql/9.5/main/postgresql.conf'

Start the 9.5 server
pg_ctlcluster 9.5 main start

Test cluster is accepting connections
psql --dbname=rails_app --command= "SELECT NOW();"

Resume the connexions
psql postgres://pgbouncer@pgbouncer.sql.production:6432/pgbouncer --command 'RESUME rails_app;'

echo "DONE"

